

The Virtual Heliospheric Observatory VHO

Preliminary Designs

Adam Szabo
NASA Goddard Space Flight Center

The Vision

A New Data Environment:

The Virtual Heliospheric Observatory (VHO) is a thin middleware layer that allows uniform, user-friendly data discovery and query on existing and future NASA Sun Earth Connection (SEC) distributed heliospheric data sets.

- See what the PIs see
- Have access to the same tools

Why do we need a new environment?

- Data sets reside on a large number of different systems.
 (e.g., NSSDC, ASC, PDS, PI sites)
- Data sets use very different formats with limited metadata. (e.g., CDF, HDF4,5, FITS, ASCII, Binary, IDL save)
- Data sets have different access methods.
 (e.g., HTML, FTP, SCP, SOAP)
- Different versions of the same data products are served from different sources.
- Limited number of joint, added value data sets.
- A common tool set is almost non-existent.

What is the goal of VHO?

- Need access to the same data products and tools what the PI teams use.
- Need open public access to data rapidly.
- Need a simple, unified method of access to all data sets and tools.
- Need to develop the new system in a reasonable amount of time and cost.

What Should the VHO Look Like?

- Rapid access + PI site tools
 - → Distributed System
- User-friendly unified access
 - → Middleware
- Timely and cheap
 - → without reprocessing (metadata) simple, expandable system

Planed VSO Architecture

Design Philosophy

- Separate the building elements
 - Data Services
 - Middleware
 - Analysis Tools
- Prototype with limit number of data products and capabilities
- Publish (share) design and all documentation
- Make system extensible
- Add new capabilities with competition and peer-review process

How Do We Get There?

Enable data service sites.

- Metadata development
 - requires a dictionary will use SPASE+
- Automated data exchange
 - allows version maintenance
 - allows cross calibration
 - allows merged data products
- Develop tool library.
- Prototype it on a small number of existing data services.

Prototype VHO

Build middleware.

- VHO allows simple browser type query.
- VHO allows complex direct API interface.
- Query construction and result processing.
- Data is directly returned from providers.
- Two, synchronized middleware to reduce bottleneck.

Full VHO Concept

- Connect VHO to VSO and other VxOs to eliminate duplication.
 - → VxOs need to be able to pass queries and results between each other.
- Add VHO computational services to merge, reaverage, etc. the returned data.
- HelioSoft tool library.
 Uniform data model.

Who Is Going To Do It?

- Enable existing data service sites to achieve common goal.
 - Data expertise and infrastructure already there.
 - Minimal incremental funding required.
 - Science participation in data management.
- Support from small VHO team.
 - Setup expertise, middleware maintenance and development
- Evolve in response to user needs.
- Will have peer-reviewed process for elements of the environment.
- Development already started on the grass-roots level.

BACKUP

Why Should STEREO Care?

- Satisfies the NASA open data policy requirement.
- Enable cross-calibration between the two spacecraft and instruments.
- Simplifies combination of STEREO data with near-Earth assets (ACE, WIND).
- Enable multi-spacecraft science.
- Provide access to the HeliSoft library.
- Provide uniform access to the scientific community.
- Requires minimal effort.

VHO Development Team

Current VHO team members:

ACE/ASC **Andrew Davis** Caltech George Ho APL ACE, WIND energetic particles, composition SOHO in-situ plasma Fred Ipavich U. Maryland Justin Kasper WIND, IMP 8, Voyager plasma MIT Berkelev WIND, LP, RHESSI, plasma, energetic part. Davin Larson Tom Narock L3/GSFC Distributed data systems **GSFC** Helios, modeling, visualization Aaron Roberts Peter Schroeder Berkeley **STEREO** Ruth Skoug LANL ACE, Ulysses plasma John Steinberg Genesis, ACE, WIND plasma LANL Adam Szabo **GSFC** WIND, IMP 8, Voyager magnetic field, plasma High-energy particles, data models Jon Vandegriff APL

Role of VHO Team:

- Setup expertise, middleware development and maintenance.
- Data and system expertise and most of infrastructure already there.
- Unfunded team only minimal funding required.
- White paper coming soon + need community input.